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LETTER TO THE EDITOR 

On the resolution of ordering ambiguities associated with the 
path integral representation of stochastic processes 

David Elderfield 
The Blackett Laboratory, Imperial College of Science and Technology, Prince Consort 
Road, London SW7 2BZ, UK 

Received 22 April 1985 

Abstract. Simple path integral approaches to multiplicative stochastic processes are severely 
hampered by an inherent ambiguity in the underlying Lagrangian associated with operator 
ordering problems. We show how, given the Fokker-Planck equation, the ambiguity can 
be resolved. Direct consequences for noise-induced transitions, reaction-diffusion models 
and polymer dynamics are briefly discussed. 

Path integrals offer a natural and powerful approach to the stochastic dynamics of 
complex systems. In particular, the multiplicative stochastic process underlying noise- 
induced transitions (Horsthemke and Lefever 1984), reaction-diff usion models (Elder- 
field 1985a, Elderfield and Vvedensky 1985a, b), polymer dynamics (Stepanow 1984) 
and kinetic growth models (Elderfield 1985b) have recently attracted special attention. 
Unhappily for multiplicative systems, the use of path integral representations is severely 
hampered by the existence of an inherent ambiguity in the choice of Lagrangian (De 
Witt 1957). Many authors (Leschke and Schmutz 1976, Langouche et a1 1979) have 
shown that for path integrals, different temporal discretisations (or operator orderings) 
lead to superficially different Lagrangians 2“; CY E ( 0 , l )  an arbitrary parameter. Con- 
sistency is demonstrated by observing that for all CY important identities associated 
with normalisation and causality are satisfied; however, it is then generally assumed 
that a free choice of a is available (Langouche et a1 1979). We argue here that such 
a point of view is erroneous (or at least gravely misleading) and moreover, given the 
Fokker-Planck equation, a is fully determined if the underlying stochastic dynamics 
is multiplicative. Particularly for noise-induced transitions the choice of CY is crucial 
if the path integral is to describe the physics correctly. On the other hand, for additive 
stochastic processes, no constraint is placed on a by the present study. 

We consider for simplicity the Fokker-Planck equation (normally ordered) 

a 
ax 

A(x)P(x ,  t)+-(B(x)P(x, t ) )  

associated with the Ito stochastic equation 

dx = - A ( x )  d t  + ( ~ B ( x ) ) ” ’  d W (2) 

which by definition for B ’ ( x )  # 0 is multiplicative in character (Gardiner 1983). To 
derive the path integral representation we follow Langouche et a1 (1979) and Faddeev 
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(1975) and associate with (1) a quantum problem described by the Hamiltonian 

fi = t ( A ( i )  - i$B(i)) (3) 

where the operators 6, 2 satisfy the familiar commutation rules 

[j, i] = i [j, j] = 0 = [i, $1. (4) 

Using the conventional bra and ket notation (alx) = X ~ X ) ,  6 I p )  = P I P ) ,  ( P I X )  = 
(1/27r) exp(ipx)) one finds that the Fokker-Planck distribution P ( x ,  t Ixo, to) satisfies 

( 5 )  P(x, tlX0, to)  = (XI fro, to)lxo> 

where fi is an evolution operator satisfying 

A f i ( r o ,  to) = I. 
Discretising the temporal interval ( to ,  t), one is then led directly to the path integral 
representation via the familiar steps ( t k  = to+ ke, k = 1 , 2 .  . . N, tN+l = t )  

where the Lagrangian 2' is defined by 

2? = p ( t ) ( & ( t )  + A(a( t ) )  - ip(t)B(a(t))) .  

Furthermore, introducing the Heisenberg operators a( t), $( t )  satisfying 

d 
-i( r) = i[fi, a( t ) ]  = -A($( t ) )  +2$( t ) B ( i (  t))  
d t  

one finds in an analogous fashion that 

( x ( t l ) x ( t 2 )  * - * x(tk))= dx(x1f(2(t1)i2(t2) * * * a(tk))lxO> 

where f denotes the time ordering operator. 
In this way one reproduces the path integrals described by Stepanow (1984) for 

the polymer problem, by Elderfield (1985a) for reaction-diffusion models and Elderfield 
(1985b) for kinetic growth models (a =O>.  To uncover the ambiguity we follow 
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Langouche et a1 ( 1979) and consider the superficially irrelevant modification 

fi  = ( 1  - a)(p^A(x^) - ip*2B(x^)) + a(A(a)p^ - 

for a E ( 0 , l ) .  Repeating the above computation, one now finds the Lagrangian 
given by 

+ a([$, A($)] -i[(p^I2 B(x^)]) 
(12) 

Broadly, the difference between (8) and (13) can be attributed to the choice of f at 
equal time. Proceeding more cautiously in the chosen discretisation, one finds quite 
typically 

= l i q  dx(x1 f($( t)(( 1 - a)x^( t - + E )  + ax (̂ t +t~))Ix,,) = -ia (14) 
E + O  I 

where we have used the property 

dx(xlp^( t )  = 6. I 
Of course, as such response functions are naturally discontinuous at equal time 
(causality), one might reasonably hope that the a dependence induced by (14) cancels 
identically in all physical correlation/response functions. Performing a systematic 
expansion about the point x, p = 0, one can test this hypothesis in great detail. For 
example, Langouche et a1 (1979) have shown that perturbatively one recovers for all 
a the identity 

(P(t)) = 0 (16) 

associated with (15 ) .  Given the Fokker-Planck equation ( 1 )  or the underlying Langevin 
equation (2), there is, however, another important test. On the one hand, the path 
integral satisfies the identity 

which leads directly to the equation of motion 

whilst, given the Fokker-Planck equation ( l ) ,  one derives 

using integration by parts. Comparing (17) and (18), we now see directly that for 
multiplicative stochastic processes (B’(x) # 0) only the choice a = 0, corresponding to a 
normally ordered Fokker- Planck equation, is consistent. One cannot, therefore, freely 
choose a to simplify the diagrammatics as suggested by Langouche et a1 (1979). The 
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implications of this for past work are happily minimal, for a = 0 also gives the simplest 
diagrammatics (no tadpoles, see (14)). In direct contrast, for the description of 
noise-induced transitions (Horsthemke and Lefever 1984), this constraint is of crucial 
importance. Making on ‘physical’ grounds the symmetric (or unbiased) choice a = 1, 
one can erroneously relate such phenomena to the more familiar equilibrium transitions 
(Hohenberg and Halperin 1977, de Dominicis and Peliti 1978). Consider, for example, 
the ‘genetic model’ of Horsthemke and Lefever (1984) 

aB 
ax 

A ( x )  z x - 4  - 

B ( x )  U’( 1 - x ’ ) ~  

for which the stationary distribution is known (zero flux boundary conditions) 

~ , ( x )  = (“)I” exp( - J x  d x X )  ( N  = normalisation constant). (21) 
B ( x )  B ( x )  

As the intensity u2 of the noise is increased, the distribution P, (x )  develops from a 
Gaussian characteristic of the underlying damped harmonic oscillator to a bimodal 
form, i.e. the system undergoes a ‘noise-induced transition’. By direct differentiation 
the extreme of (21) satisfy 

x [  1 - u2( 1 - x’) ]  = 0 (22) 

so one identifies the threshold as U:= 1 for this transition. On the other hand, given 
the Lagrangian Za (13), a natural ‘mean-field approximation’ presents itself in the 
form of the extremum equations 

. (24) 

Comparing (23) with (22), we see that for a = f  one can recover the ‘noise-induced 
transition’ of Horsthemke and Lefever (1984) ( p ,  = 0, see (16)). However, as shown 
above, we must take a = 0, so the apparent agreement is totally illusory. Of course, to 
avoid violating (16), the mean-field relation (24) is to be interpreted as a loop subtraction 
(de Dominicis and Peliti 1978) in the normal manner. 

I would like to thank the SERC for support. 
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